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Abstract 0 A novel least-squares deconvolution method for estimating 
the rate and the extent of drug input into the systemic circulation is 
presented. The method is based on a polyexponential approximation of 
the impulse response and a polynomial approximation of the input rate. 
The method, which is readily implemented on a computer using any 
multiple linear regression program with a zero-intercept option, is com- 
pared to two other deconvolution methods using simulated data with 
various degrees of random noise added. It appears to have several sig- 
nificant advantages. The method is applied to plasma pentobarbital level 
data from oral and intravenous administration. The assumptions and 
limitations of deconvolution methods for analyzing drug input into the 
blood are discussed. 

Keyphrases 0 Pharmacokinetics-deconvolution method, linear 
pharmacokinetics, polyexponential impulse response, drug input into 
blood 0 Blood-drug input, deconvolution method for pharmacokinetic 
estimation Deconvolutions-pharmacokinetic estimation of drug input 
into blood Drug bioavailability-blood, deconvolution method for 
pharmacokinetic estimation 

Drug input analysis is of utmost importance in bio- 
pharmaceutics because of its fundamental role in drug 
design, evaluation, and administration. Accurate quanti- 
tation of a drug’s input-response relationship in a subject 
or patient population is, therefore, important. The relevant 
response is usually the drug concentration in the blood, in 
a certain tissue, or in an organ, but it may be a pharmaco- 
logical or toxicological response. 

The response environment is the destination for the 
input to be quantitated. There are two kinds of response 
environments: sampleable, i.e., environments that can be 
quantitatively sampled for the drug, and nonsampleable. 
The blood, a tissue, or an organ are sampleable environ- 
ments. Drug receptors and other biochemical structures 
responsible for a drug’s pharmacological-toxicological 
response are usually nonsampleable environments. A 
drug’s input can be experimentally verified only for sam- 
pleable environments. The evaluation of a drug’s input into 
a nonsampleable environment would be based on some 
hypothesis about the quantitative relationship between 
the drug concentration in the nonsampleable response 
environment and the sampleable response. Therefore, it 
is not possible to quantitate drug input from pharmaco- 
logical measurements if the input is defined with respect 

to a nonsampleable response environment, e.g., drug re- 
ceptors or “the biophase” (1). 

For only a few drugs is it possible to establish experi- 
mentally a quantitative functional relationship between 
the drug concentration in a sampleable environment (e.g., 
the blood) and the pharmacological response. In such 
cases, the pharmacological response may be used to eval- 
uate the input into the sampleable environment. The 
possibility of noninvasive, nonanalytical techniques to 
quantitate drug input from pharmacological response 
measurements is exciting (1). However, the sources of er- 
rors are enormous and generally result in very inaccurate 
results. The blood is usually not the “site of action” for a 
drug and, therefore, may not represent the ultimate des- 
tination for the drug input. However, the transfer of a drug 
to the site of action from the blood is often direct, or the 
barriers involved are often insignificant compared to the 
physical, chemical, and biological barriers the drug en- 
counters to get into the blood. Thus, it is adequate in most 
cases to evaluate the drug input with the blood as the re- 
sponse environment, as in the present approach. 

The treatment presented is limited to linear phar- 
macokinetic systems, i.e., systems where the input-re- 
sponse relationship follows the linear superposition prin- 
ciple. The classical linear compartmental systems (2, 3) 
belong to the family of linear systems. The method pre- 
sented can be characterized in the classical (linear com- 
partmental) pharmacokinetic sense as model independent. 
The various published approaches for evaluating drug 
input were discussed previously (4,5). 

THEORY 
The drug level in the blood, c * ( t ) ,  after an intravenous bolus dose, q* ,  

can often be well described by a polyexponential expression: 
n 

I = 1  
c * ( t )  = a,eXJ (Eq. 1) 

If the blood drug level behaves linearly with respect to input into the 
blood, then the unit impulse response is c * ( t ) / q * ,  and the response to an 
arbitrary input rate, f ( t  ), is given by the general expression: 

c ( t )  = 4* J f  / ( t  - u)c* (u)du 

312 I Journal of Pharmaceutical Sciences 
Vol. 69, No. 3, March 1980 

0022-35491 801 0300-03 12$0 1.001 0 
@ 1980, American Pharmaceutical Association 



A suitable method is to be derived whereby f ( t )  can be estimated from 
samples of the bolus response, c*(t) ,  and the input (absorption) response, 
c ( t ) .  

Considering the many factors influencing the absorption process, it 
may be appropriate to approximate f ( t )  with a model-independent em- 
pirical equation such as a polynomial: 

N 
f ( t )  = x Xit’ (Eq. 3) 

i-0 

The problem is then to determine the polynomial coefficients xo, xi , .  . . , 
XN.  The following derivations (Eqs. 4-15) lead to an equation, Eq. 16, that 
is linear with respect to the coefficients. This equation can be used to 
calculate the coefficients by standard multiple linear regression tech- 
niques. 

Inserting Eqs. 1 and 3 into Eq. 2 leads to: 

The binomial expansion for ( t  - uIi leads to: 

so that: 

The following useful integral formula can be derived readily: 

(Eq. 7 )  

By applying this formula to the integral in Eq. 6 ,  this equation be- 
comes: 

( i  - A !  
A?(i - j - m ) !  

X 

The second term in Eq. 8, indicated by a bracket, simplifies to: 

Multiplying through with t J  and rearranging terms in the first term of 
Eq. 8 lead to: 

(Eq. 10) 

By changing the order of the summation and rearranging terms, this 
expression becomes: 

(Eq. 11) 

The coefficient to ti-”’ resulting from the two innermost summations 
in Eq. 11 is: 

Thus, only the term l/Ah(m = i) is left from the two innermost summa- 
tions, which results in a substantial simplification of Eq. 11: 

Equation 8, according to Eqs. 9 and 13, simplifies considerably to: 

which also can be rearranged to give: 

‘A 
DATA SET 1 

TIME 
Figure 1-Test of the new method on simulated data containing I % 
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). The  curve representing the  input response data (0) is calculated 
from Eq. 16 using the parameters XO, XI, . . . , XN estimated by multiple 
linear regression and the parameters estimated from Eq. 1. The  input 
curve is the  input rate calculated according to E9.3. T h e  broken curve 
is the  exact input rate. 

For further simplification and to illustrate the linearity of c ( t )  with re- 
spect to the polynomial coefficients X O ,  X I ,  . . . , XN, Eq. 15 can be 
written: 

(Eq. 16) 

where: 

The expreasion inside the brackets in Eq. 17 is recognized as the difference 
between e x i t  and a truncated Maclaurin series expansion of eAJt. This 
difference becomes smaller when Aj t  - 0 and when i increases, which 
may result in subtraction cancellation and loss of significant figures in 
the calculations. However, this result can be avoided by using alternative 
formulas for &(t).  When 1 Xjrl is small (<0.1), & ( t )  is calculated most 
accurately from the tail of the Maclaurin series: 

If the computer used represents floating-point numbers to m significant 
decimal digits, then K in Eq. 18 should be equal to i + m + 1 to get the 
best accuracy ( 1  Xjt 1 < 0.1). (The first neglected term in the summation 
of the series gives a strict error estimate because the series is alternating.) 
In the extreme cases where i ( N )  is large and I Ajt I is not small, Oi(t) can 
be accurately evaluated using the integral representation of the tail of 
the Maclaurin series, which is: 

where the integral is evaluated numerically. However, in most cases, it 
would not be necessary to use Eq. 19 because Eq. 17 is sufficiently accu- 
rate, particularly if the calculations are done in double precision. Fur- 
thermore, the number of sampling points in the absorption phase is fre- 
quently small. To avoid “fitting to the errors in the data,” i t  is not ad- 
visable to use a polynomial of high degree in the approximation of the 
input rate f ( t )  so N will not be large. 

EXPERIMENT A L 

The method presented was tested using the same simulated and real 
pharmacokinetic data used previously (5 )  so that it could be compared 
to two other deconvolution methods tested on the same data (5,  6). A 
function subprogram was written in FORTRAN IV which evaluated the 
theta function O , ( t  ) I .  The subprogram algorithm automatically chooses 
among Eqs. 17-19 so that the best accuracy is obtained. The integral in 
Eq. 19 was evaluated using a product-type two-point Gauss-Legendre- 

A listing of the subprogram is available from the author. 
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DATA SET 1 

o r .  . ‘ . I . .  . . 1 n ‘ ’ ’ “ ’ .  ’ .  
TIME 

Figure 2-Test of  the  new method on simulated data containing 1 % 
random errors. Equation 1 (n = 2) is fitted to  the impulse response data 
(+). The  curue representing the input response data ( 0 )  is calculated 
from Eq. 16 using the parameters XO, XI,. . . , XN estimated by multiple 
linear regression and the  parameters estimated f rom Eq. 1. T h e  in- 
creasing curue is the amount of input calculated from the  integrated 
form of Eq. 3. The  broken curue is the exact cumulatiue amount of 
input.  

Simpson algorithm compounded 50 times (7), which gave excellent ac- 
curacy. 

The subprogram was used to generate, from the M observations ci, ti, 
i = I, 2, . . , M, an M X (M + 1) data matrix ldij] for input to the multiple 
linear regression program that calculated XO, x I, . . . , XN (Eq. 3). The first 
data matrix column contains the M observations of the dependent vari- 
able, i.e., the observed drug concentrations dil = c,, i = 1,2,. . . , M. The 
other data matrix columns contain the independent variables dij = 
O,-z(ti), i = 1,. . . , M, j = 2, .  . . , M + 1. The highest degree possible for 
the polynomial that approximates f ( t )  is N = M - 1, which corresponds 
to a collocation approximation (zero residual sum of squares). Most of 
the many multiple linear regression programs available for statistical 
computations can be used to calculate the parameters XO, XI,. . . , X N  of 
the input function from this data matrix. The only requirement is that 
the regression program must have a zero-intercept option that is to be 
used in this regression situation (Eq. 16)2. 

The program P9R, “All Possible Subset Regression,” from the 

2 

I- 
K 
I- 
2 
w 
0 
2 

II 
a 

8 

DATA SET 2 

- 0.5 
I- 

LL . o  
c z 
3 . o  z a 

0 1 
TIME 

Figure 4-Test o f  the  new method on simulated data containing 10% 
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). T h e  curue representing the input response data (0) is calculated 
from Eq. 16 using the parameters XO, XI,. . . , XN estimated by multiple 
linear regression and the  parameters estimated from Eq. 1. T h e  in- 
creasing curue is the  amount of input calculated from the  integrated 
form of Eq. 3. T h e  broken curue is the exact cumulative amount of 
input.  

BMDP-77 biomedical computer program package (9) was used with the 
zero-option and TOL = The program was used to automatically 
find, among TO, XI, . . . , X M - ~ ,  the best subset based on Mallow’s criterion 
(10). The parameters of the polyexponential expression, Eq. 1, fitted to 
the intravenous bolus data were reported previously (5) and were de- 
termined using the FUNFIT nonlinear regression program (11). The 
drawings (Figs. 1-9) were done by a penplotter driven by a computer3 
using a software package written by the author. The lag times used in the 
calculation of the pentobarbital input were those reported earlier (5). 

RESULTS AND DISCUSSION 

The proposed method is a least-squares deconvolution method, as is 
the method presented by Cutler (6). Both methods are based on a poly- 
nomial approximation of the input rate. However, the present method 
offers four significant advantages over Cutler’s method: 

1. The impulse response (bolus input response) is approximated by 
a polyexponential expression and not by a polynomial. A polyexponential 
expression does not tend to “fit to the errors” in the data as a polynomial 

DATA SET 2 
DATA SET 3 

j l . 5  

TIME 
Figure 3-Test of the  new method on  simulated data containing 10% 
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). The curue representing the input response data (0) is calculated 
/rom E9.16 using the parameters XO, XI, . . . , XN estimated by multiple 
linear regression and the parameters estimated from E9. 1. T h e  input 
curue is the input rate calculated according to Eq. 3. T h e  broken curue 
is the exact input rate. 

The two most widely used statistical software packages SPSS (8) and BMDP 
(9) contain several multiple linear regression programs. However, only the BMDP 
programs have the zero-intercept option. These programs allow the data to be 
weighted. 

TIME 
Figure 5-Test of the new method on simulated data containing 1 %  
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). T h e  curue representing the input response data (0) is calculated 
from Eq. 16 using the parameters XO, XI,. . . , XN estimated by multiple 
linear regression and the parameters estimated f rom Eq. 1. The  input 
curue is the input rate calculated according to Eq. 3. The  broken curue 
is the exact input rate. 

IBM 370. 
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Table I-Rate and Extent of Input Calculated from Data Set 1 

Time 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 

Meanc 
SD' 

Exact Rate Rate 
Percent 

Differencea Exact Amount Amount 
Percent 

Difference* 

0.9825 
0.8044 
0.6586 
0.5392 
0.3614 
0.2423 
0.1624 
0.1089 
0.0730 
0.0489 
0.0220 

0.9712 
0.8146 
0.6780 
0.5598 
0.3732 
0.2434 
0.1590 
0.1084 
0.0803 
0.0631 
0.0160 

-0.94 
0.86 
1.62 
1.72 
0.98 
0.10 

-0.29 
-0.04 
0.61 
1.18 

-0.50 
0.80 
0.56 

0.1088 
0.1978 
0.2707 
0.3304 
0.4193 
0.4789 
0.5188 
0.5456 
0.5635 
0.5755 
0.5890 

0.1058 
0.1950 
0.2694 
0.3312 
0.4234 
0.4842 
0.5238 
0.5501 
0.5687 
0.5829 
0.6003 

-0.49 
-0.48 
-0.21 
0.13 
0.69 
0.90 
0.84 
0.75 
0.86 
1.23 
1.89 
0.77 
0.49 

a Calculated as 100 X (calculated rate - exact rate)/l.2, where 1.2 is the initial exact input rate. Calculated as 100 X (calculated amount - exact amount)/0.6, where 
0.6 is the exact total amount of input ( t  = -). C The mean and standard deviation of the absolute values of the percent difference. 

Table 11-Rate and Extent of InDut Calculated from Data Set 2 

Percent Percent 
Time Exact Rate Rate Difference" Exact Amount Amount Difference * 
0.1 0.9825 .~ 

0.2 
0.3 
0.4 

. ~ _ ~ .  

0.8044 
0.6586 
0.5392 

0.6 0.3614 
0.8 0.2423 
1.0 0.1624 
1.2 0.1089 
1.4 0.0730 
1.6 0.0489 
2.0 0.0220 

Meanc 
SD' 

0.8303 
0.7426 
0.6595 
0.5810 
0.4378 
0.3129 
0.2065 
0.1184 
0.0486 

-0.0027 
-0.0503 

- 12.68 
-5.15 
0.08 
3.48 
6.36 
5.89 
3.67 
0.79 

-2.03 
-4.30 
-6.02 
4.59 
3.41 

~~ 

0.1088 
0.1978 
0.2707 
0.3304 
0.4193 
0.4789 
0.5188 
0.5456 
0.5635 
0.5755 
0.5890 

~~ ~ ~ ~ ~~ 

0.0876 -3.53 
0.1662 -5.27 
0.2363 -5.74 
0.2983 -5.36 
0.3998 -3.24 
0.4746 -0.71 . ~ ~. 

0.5262 
0.5584 
0.5748 

i.24 
2.14 
1.88 

0.5791 0.59 
0.5660 -3.83 

3.05 
1.88 

Calculated as 100 X (calculated rate - exact rate)/l.2, where 1.2 is the initial exact input rate. Calculated as 100 X (calculated amount - exact amount)/0.6, where 
0.6 is the exact total amount of input (t = -). The mean and standard deviation of the absolute values of the percent difference. 

does. It is smoother and does not oscillate between data points as a 
polynomial often does. It is also superior to a polynomial with respect to 
the extrapolation to time zero, which plays an important role in the ac- 
curacy of any deconvolution method. Polyexponential expressions have 
been used successfully and extensively in pharmacokinetics to describe 
intravenous bolus data, and many application programs are available for 
this curve-fitting procedure (8,11, 12). 
2. The rate and extent of input are given in a simple, explicit mathe- 

matical form by the new method. Cutler (6) expressed the input rate as 

DATA SET 3 

TIME 
Figure 6-Test of the new method on simulated data containing 1 % 
random errors. Equation 1 (n = 2 )  is fitted to the impulse response data 
(+). The curve representing the input response data (0) is calculated 
from Eq. 16 using the parameters XO. XI,. . . , XN estimated by multiple 
linear regression and the parameters estimated from Eq. 1.  The in- 
creasing curve is the amount of input calculated from the integrated 
form of Eq. 3. The broken curve is the exact cumulative amount of 
input. 

a sum of polynomial functions which, through a linear transformation, 
gives a set of orthogonal functions. Although a back-transformation and 
summation of terms may provide a single polynomial expression, this 
approach substantially increases the complexity of the method. 
3. The present method requires very little programming on a com- 

puter. Only a short program is needed that, according to Eq. 17 or 18 (or 
Eq. 19 in rare cases), generates the da,h matrix for input to a standard 
multiple linear regression program. This programming can be done even 
using an ordinary programmable pocket calculator. The input function 
is calculated directly by the linear regression program in terms of the 
polynomial coefficients. Implementation of Cutler's method requires the 

DATA SET 4 

h 
c 

1.0 ,> 

P 
0.5 a a 

3 
u. 
0 

0 

TIME, 
Figure 7-Test of the new method on simulated data containing 10% 
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). The curve representing the input response data (0) is calculated 
from Eq. 16 using the parameters ~ 0 ,  XI,. . . , XN estimated by multiple 
linear regression and the parameters estimated from Eq. 1.  The input 
curve is the input rate calculated according to Eq. 3. The broken curve 
is the exact input rate. 
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Table 111-Rate and Extent of Input  Calculated from Data Set 3 

Percent Percent 
Time Exact Rate Rate Difference" Exact Amount Amount Difference* 

0.1 1.3048 1.3133 0.54 0.1433 0.1427 -0.10 
0.2 1.0681 1.0924 1.55 0.2618 0.2629 0.18 
0.3 0.8551 0.8844 1.87 0.3577 0.3616 0.65 
0.4 0.6657 0.6936 1.78 0.4336 0.4404 1.13 
0.6 0.3580 0.3758 1.14 0.5344 0.5458 1.90 
0.8 0.1450 0.1543 0.59 0.5831 0.5972 2.35 
1.0 0.0266 0.0305 0.25 0.5987 0.6141 2.57 
1.2 0 -0.0082 -0.52 0.6000 0.6151 2.52 
1.4 0 0.0112 0.72 0.6000 0.6147 2.45 
1.6 0 0.0478 3.05 0.6000 0.6207 3.45 
2.0 0 -0.0625 -3.99 0.6000 0.6321 5.35 

MeanC 1.45 2.06 
SD' 1.18 1.54 

Calculated as 100 X (calculated rate - exact rate)/(1.&3/1.15), where 1.8/1.15 is the exact initial input rate. Calculated as 100 X (calculated amount - exact amount)/0.6, 
where 0.6 is the exact total amount of input ( t  = =). The mean and standard deviation of the absolute values of the percent difference. 

Table  IV-Rate and  Extent of Input  Calculated from Data Set 4 
~ ~~~~ 

Percent Percent 
Rate Difference" Exact Amount Amount Difference * Time Exact Rate 

0.1 1.3048 1.1487 -9.97 0.1433 0.1235 -3.30 
0.2 1.0681 0.9863 -5.23 0.2618 0.2301 -5.28 
0.3 0.8551 0.8353 -1.27 0.3577 0.3211 -6.10 
0.4 0.6657 0.6956 1.91 0.4336 0.3976 -6.00 
0.6 0.3580 0.4504 5.90 0.5344 0.51 14 -3.83 
0.8 0.1450 0.2507 6.75 0.5831 0.5808 -0.38 
1.0 0.0266 0.0964 4.46 0.5987 0.6147 2.67 
1.2 0 -0.0125 -0.80 0.6000 0.6223 3.72 
1.4 0 -0.0759 -4.85 0.6000 0.6127 2.12 
1.6 0 -0.0938 -5.99 0.6000 0.5950 -0.83 
2.0 0 0.0067 0.43 0.6000 0.57 15 -4.75 

Mean ' 4.32 3.54 
S D  2.95 1.93 

Calculated as 100 X (calculated rate -exact rate)/(1.8/1.15), where 1.8/1.15 is the exact initial input rate. * Calculated as 100 X (calculated amount - exact amount)/0.6, 
where 0.6 is the exact total amount of input ( t  = m). c The mean and standard deviation of the absolute values of the percent difference. 

development of a fairly extensive and specialized program. Moreover, 
the user would not have many of the valuable statistical options that are 
supplied by the standard multiple linear regression programs (9). 

4. The present method is computationally efficient and fast. With 
Cutler's method, a convolution integral (Ref. 6, p. 249) is evaluated 
numerically several times during the computations. The integration may 
introduce significant errors and may add significant cost to the compu- 
tations if the results are to be presented graphically. 

Simulation Results-The present results and comparisons are related 

DATA SET 4 

O:. . .  . ' ' . ' . ' " . ' ' .  1 . ' .  
TIME 

Figure 8--Test of the new method on simulated data containing 10% 
random errors. Equation 1 (n = 2) is fitted to the impulse response data 
(+). The curue representing the input response data (0) is calculated 
from Eq. 16 using the parameters XO, XI, .  . . , XN estimated by multiple 
linear regression and the parameters estimated from Eq. 1 .  The in- 
creasing curue is the amount of input calculated from the integrated 
form of Eq. 3. The broken curue is the exact cumulatiue amount of 
input. 

to a similar investigation recently published (5). Comparing Tables I-IV 
with Tables 11-V in Ref. 5 shows that the present method and Cutler's 
method do not differ significantly in the accuracy of estimating the input 
for Data Sets 1,2,  and 4 (Tables I, 11, and IV). However, the present 
method appears t o  be significantly more accurate for Data Set 3 (Table 
111). Both methods perform well, considering that the average relative 
error in all estimations is of the same magnitude as the noise added to 
the simulated data. 

Each method tends consistently to underestimate the initial input rate. 
This trend is probably related to the use of a polynomial in the input 
approximation. I t  may be explained theoretically ["Runge's phenome- 
non" (13)]. A special sampling procedure may eliminate or reduce this 
trend and give an overall better estimation. This procedure, based on the 
min-max principle using a Tschebyscheff sampling (13), is as follows. 
Let it be known from preliminary investigations that the absorption of 
the drug is completed (e.g., 95%) in approximately T hr after the lag time 
and that the lag time is approximately t h  hr. If the experimental protocol 
allows m samples to be drawn, then these samples should be taken at  the 
following times: 

i = 1,2, .  . . , m  (Eq. 20) 1 (2i - 1)* 
ti = t ] ,  + - 1 + cos- " 2 2m 

A few additional samples are required after T + t l ,  hr to check for a 
change in the disposition kinetics between the intravenous and the ab- 
sorption experiments. However, these points should not be included in 
the actual calculation of the input because they may interact unfavorably 
with the curve fitting in the absorption region. 

Calculation of Pentobarbital Input-It is of interest to compare the 
present method with the other deconvolution method presented by the 
author (Ref. 5, Fig. 9). The pentobarbital data are rather difficult to treat, 
because the absorption phase is defined by only three or four data points 
and the data contain rather large errors. However, it is surprising how 
similarly the two methods perform in the absorption region. The total 
percent absorbed, measured by the maximum of the percent absorbed 
curve, does not differ much between the methods. The times for the ab- 
sorption are also rather close. 

However, the present method does not perform as well with respect 
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Table V-Calculated Polynomials that Describe the Rate of 
h D U t  a 

SUBJECT R . M .  

- n  

0 1 2 3 4 5 6 
HOURS 

SUBJECT B . G .  

- a  P 20 - 
L 

1 2 3 4 5 6 0 
0 

HOURS 

SUBJECT R . B .  

- w  

w a 

1 2 3 4 5 6 0 1 1  
0 

HOURS 
Figure 9-Application of the new method to calculate the cumulative 
amount of pentobarbital input in human subjects. Equation 1 (n = 2 )  
is fitted to the plasma drug level data (+) from intravenous adminis- 
tration. The curve representing oral absorption data ( 0 )  is calculated 
from Eq. 16 using the parameters Q, XI,. . . , XN estimated by multiple 
linear regression and the parameters estimated from Eq. 1 .  The input 
is calculated according to the integrated form of Eq. 3. 

to the curve fitting after the absorption phase. It demonstrates some of 
the undesirable effects originating from the polynomial approximation 
of the input rate; the absorption curve for Subject R.B. passes too claw 
to all of the points, probably resulting in a poor filtering of the errors in 
the data. The curve for Subject B.G. shows excessive oscillations. How- 
ever, the curve for Subject R.M. seems satisfactory overall. The same 
discrepancies between the intravenous and the absorption data reported 
previously (5) are also observed usinithe present method. 

It is important to note that the calculation of the rate and extent of drug 
input at a given time, t = to, depends only on the fitted curves up to that 

Data Set Rate of Input 
~ 

1 
2 
3 
4 

f ( t )  = 1.149 - 1.891t + 1.139t2 - 0.2385t3 
f ( t )  = 0.9225 - 0.9457t + 0.2297t2 
f ( t )  = 1.542 - 2.311t + 0.1076t2 + 1.059t3 - 0.3680t4 
f ( t )  = 1.322 - 1.794t + 0.5682t2 

~ 

0 0.1 5 t 5 2.0. 

time, to, according to the fundamental convolution integral equation (Eq. 
2). Thus, the accuracy of the calculated input depends only on the 
goodness of the fit in the absorption phase. The goodness of the fit in the 
postabsorptive phase has no influence on the calculations. A fitting in 
this region is not required, but it provides a means of detecting dis- 
crepancies between the intravenous and absorption data (5 ) .  The fits in 
the absorption phase (Fig. 9) appear satisfactory considering the 
sparseness of the data in this region. 

Assumptions and Limitations of Deconvolution Methods of 
Analysis of Drug Input into Blood-The deconvolution methods are 
based on the assumption of a time-invariant linearity between input and 
response in the sampleable response environment (the blood). A neces- 
sary condition for an environment to be linear is that the principle of 
superposition applies; i.e., the sum or superposition of any two inputs, 
f i ( t )  + f&), results in a response that is the superposition, c l ( t )  + cp(t), 
of the individual reaponses (14). Corollaries to the superposition principle 
are: 

1. No input affects the response of other inputs. 
2. There is no interaction among the responses caused by different 

inputs. 
3. The total response of several inputs into the environment can be 

determined by determining separately the response of the environment 
to each individual input and then superimposing the responses to get the 
total response. 

These principles are well known from linear system theory (14). 
However, the real problem in applying these principles to pharmacoki- 
netics apparently has not been discussed, namely, the effect of the input 
path on the response. The deconvolution methods can be used only if the 
response to a well-defined input is determined. The input is only well 
defined if it is direct intravenous (bolus and/or infusion). Consequently, 
the information about the system's input-response relationship is based 
only on a direct intravenous input. However, the inputs that are of in- 
terest are not direct intravenous. Therefore, the validity of the decon- 
volution approach is directly related to Corollary 1. 

The crucial question is: Does the drug in its indirect path to the sam- 
pleable response environment affect the change in the concentration of 
the drug already in the environment so that the concentration change 
is different from that predicted had the input been direct? This question 
is identical to the question posed previously in dealing with the evaluation 
of input into linear compartmental systems (4): Is the input inter- 
acting? 

Deconvolution methods can only be used to evaluate a noninteracting, 
primary input (4). Therefore, to verify the validity of the deconvolution 
approach, the system must be tested not only with respect to superpo- 
sition but also with respect to interaction. A superposition test requires 
a minimum of two different direct intravenous bolus or intravenous 
infusion inputs. A test for interaction requires two experiments, one in- 
volving only a direct intravenous input and the other involving the in- 
direct and direct inputs combined, where the drug in either the indirect 
or the direct input must be labeled in order to evaluate a possible inter- 
action between the two inputs. 

In spite of the crucial role that these aspects play in drug input eval- 
uation, there does not seem to have been any work done in this funda- 
mental area. 

Table VI-Rate of Input of Pentobarbital 

Subject Rate", mghr  Lag Time, hr 

0.46 

0.0 

f ( t )  = 159 - 2667' + 150T2 

f ( t )  = 69.9 - 64.7T+ 17.8T2 

B.G. 

R.M. 
- 34.7T3 + 2.77T4 

- 1.54T3 
R.B. f ( t )  = 149-l-3653 + 313T2 0.36 

- 1 2 2 ~ 3  + 2 2 . 1 ~ 4  - 1 . 4 9 ~ 5  

0 T = time - lag time. 
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The method presented, when applied with care, should be a valuable 
tool in drug absorption investigations. It seems to have some distinct ad- 
vantages over the method proposed by Cutler (6). The simulation data 
generated by Cutler do not differentiate between the two approaches. 
However, these data represent rather ideal, somewhat unrealistic cases. 
More realistic tests might result in a definite distinction of the methods. 
The relative accuracy of the two approaches in practice is closely related 
to the issue of whether the impulse response data (ie., the intravenous 
bolus data) are best approximated by a polynomial or a polyexponential 
expression. I t  seems quite evident that the latter is the case, so the present 
method should be generally more accurate. Although this method seems 
promising, i t  appears from previous theoretical considerations (4) that 
the other deconvolution method presented by the author (5) is superior. 
However, the new method has the advantage that the rate and the 
amount (cumulative) of input are summarized in a simple polynomial 
form (Tables V and VI). 

REFERENCES 

(1) V. F. Smolen, J .  Pharmacokinet. Biopharm., 4,337 (1976). 
(2) P. Veng Pedersen, J .  Pharm. Sci., 67,187 (1978). 

(3) J. G.  Wagner, “Fundamentals of Clinical Pharmacokinetics,” 

(4) P. Veng Pedersen, J. Pharm. Sci., 69,298 (1980). 
(5) Ibid., 69,305 (1980). 
(6) D. J. Cutler, J. Pharmacokinet. Biopharm., 6,243 (1978). 
(7) W. R. Boland and C. S. Duris, BIT, 1 I, 139 (1971). 
(8) N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrenner, and D. H. 

Bent, “SPSS, Statistical Package for the Social Sciences,” McGraw-Hill, 
New York, N.Y., 1975. 

(9) W. J. Dixon and M. B. Brown, “BMDP Biomedical Computer 
Programs,” University of California Press, Berkeley, Calif., 1977. 

(10) C. Daniel and F. S. Wood, “Fitting Equations to Data,” Wiley, 
New York, N.Y., 1971, p. 86. 

(11) P. Veng Pedersen, J.  Pharmacokinet. Biopharm., 5, 513 
(1977). 

(12) C. M. Metzler, “A Users Manual for NONLIN,” Tech. Rept. 
7293/7292/005, Upjohn Co., Kalamazoo, Mich., 1969. 

(13) G. Dahlquist and A. Bjork, “Numerical Methods,” Prentice-Hall, 
Englewood Cliffs, N.J., 1974. 

(14) B. M. Brown, “The Mathematical Theory of Linear Systems,” 
Chapman and Hall, London, England, 1965. 

Drug Intelligence Publications, Hamilton, Ill., 1975. 

Novel Approach to Bioavailability Testing: 
Statistical Method for Comparing Drug Input 
Calculated by a Least-Squares Deconvolution Technique 

PETER VENG PEDERSEN 
Received January 29,1979, from the Department of Pharmacy, School of Pharmacy, University of California, San Francisco, CA 
94143. Accepted for publication July 18,1979. 

Abstract 0 A novel approach to bioavailability testing is presented. The 
approach is model independent because it does not assume a specific 
pharmacokinetic model and does not use absorption, distribution, or 
elimination rate constants or a volume term. The method, which requires 
intravenous administration, is compared to classical bioavailability 
evaluation methods. Evaluation of drug input is based on the same as- 
sumptions required for using the area under the curve. No extrapolation 
beyond the last data point is required. Two statistics are derived that 
enable a comparison of the rate and the cumulative amount of input of 
two inputs for various times. A differential confidence profile is calculated 
that allows a more detailed and intrinsic bioavailability comparison than 
previous methods. The approach is demonstrated on simulated data 
containing random noise and shows satisfactory performance. 

Keyphrases 0 Bioavailability-testing, drug input, least-squares de- 
convolution technique 0 Deconvolution-least-squares technique, 
bioavailability testing, drug input 0 Drug availability-testing, least- 
squares deconvolution technique 

The quality of a drug product as a drug delivery system 
is determined by the rate and extent of delivery of the ac- 
tive form to the biological environment responsible for the 
pharmacological effect. In most cases, this environment 
is neither known nor may be sampled for the drug. How- 
ever, a close relationship usually exists between the drug 
concentration in a sampled environment (e.g., blood) and 
its pharmacological response. Therefore, this environment 
may be a useful indicator of the drug input into the re- 
sponse environment. 

Drug delivery usually is characterized in bioavailability 
terms with the blood as the sampleable environment. 
Bioavailability commonly is defined by the rate and the 
extent of drug input into the systemic circulation (1). 
Bioavailability comparisons usually are based on three 

parameters from a single-dose blood level curve: ( a )  the 
area under the curve, AUC (extrapolated); ( b )  the time of 
the peak concentration, t,,,; and ( c )  the peak concentra- 
tion, C,,, (2). 

These parameters are associated conceptually with the 
extent (AUC) and the rate (tm,, and Cmax) of input. This 
association is related to linear pharmacokinetic assump- 
tions. For example, AUC is a proper measure of the total 
input only if the response (concentration) is linear with 
respect to the input (3, 4). If the system is not linear, a 
larger AUC does not guarantee greater input. Comparisons 
of the drug input on the basis of A UC may be inaccurate 
for several reasons: 

1. The tail area must be estimated by extrapolation. 
Consequently, this area can be determined only by a 
model-dependent approach that assumes a certain func- 
tional form for the tail or the total curve. 

2. The tail area frequently is estimated from the last 
observations (e.g. ,  log-linear extrapolation), based on the 
assumption that these points predict the behavior in the 
tail. The tail area usually is determined poorly in this way 
due to low information density of the terminal set of points. 
This problem is complicated further by constraints in time 
and the number of samples when dealing with human 
subjects. The experimenter must decide whether more 
samples should be taken in the terminal phase, where little 
or no input takes place, to predict the tail area better or 
whether these samples would be more valuable in the input 
phase where the real information about the input is present 
and where C,,, and tmax are to be estimated. 

3. The problem is complicated by the fact that the tail 
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